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A STATISTICAL EVALUATION OF METHODS
OF CHROMATOGRAM INTERPRETATION-GPC

M.J. Pollock, J.F. MacGregor and A.E. Hamielec.
Chemical Engineering Department,
McMaster University,
Hamilton, Ontario,
Canada.

ABSTRACT

Herein is reported a statistical evaluation of two common
methods of determining the molecular weight calibration curve using
broad molecular weight distribution standards. A Monte-Carlo
simulation technique was employed to investigate and compare error
propagation in these methods. It has been common practice to
evaluate methods of chromatogram interpretation on an entirely
theoretical basis without consideration of error propagation in
the calculation procedures employed in the various methods. It
is possible for a method which has a sounder theoretical basis
to give less reliable results because of excessive error propaga-
tion. A statistical evaluation of error propagation also identifies
the steps in calculation procedures where serious error propagation
occurs leading perhaps to alternate and improved calculation paths,

The analysis of several sources of error is presented in
detail including propagation errors due to errors in the molecular
weight averages of the broad molecular weight distribution standards
and chromatogram replication error.

INTRODUCTION

In much of the literature published in the polymer field,
little attention is given to the errors in the results of analysis
by GPC. The majority of results for polymer samples are reported
only as E&, ﬁﬁ and polydispersity with no confidence- interval

quoted on these values.
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One reason for this neglect is the complexity of the problem
A standard or series of standards is first used to obtain a
molecular weight calibration curve followed by the use of this
curve to establish the ﬁ&, ﬁh values for the polymer sample under
consideration.

In almost all cases, only broad molecular weight standards
are available. As a result, the calibration curve is obtained by
complex formulae involving integration. The analysis of the
unknown is also carried out by these complex formulae which may
even include a non-linear correction factor for axial dispersiom.
As a result, standard statistical techniques for estimating the
error in the results due to errors in input parameters become

impractical.

It is the purpose of this report to present a reasonably simple
method for estimating the error magnitudes of the results due to
input errors, and also to determine to some extent which input
parameters are most important. The analysis technique used
involved a Monte-Carlo type simulation and will be discussed in

more detail later.

Two simple methods for GPC analysis by broad standards were
considered in this paper. The first was the linear effective
calibration method developed by Balke, Hamielec et a1 (1) normally
referred to as the Hamielec method. The second method examined
was a modified form of the Hamielec method called GPCV2Z which
corrects for axial dispersion to present a true molecular weight
calibration curve. The GPCV2 method was developed by Yau et a1(2)

and will be referred to as the Yau method in this paper.

THEORY
The two techniques investigated both assume a linear calibr-
ation curve of the form log M,, = log D; - Dyv (or M, = Dle_Dzv)
where D; i1s related to the intercept of the curve, D, is related
to the slope of the calibration curve and My is the molecular
weight of the polymer eluting at retention volume v. The general

equations for number and weight average molecular weights are
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expressed by equations (1) and (2), where the W,, points represent

the normalized chromatogram of the polymer corrected for axial

dispersion.
- -D
Mw(t) =7 WVMV =3 Wlee 2v (l)
Hy(e) =~ 2 (2)
My(t) = £ W/, Z wveDzv

In Hamielec's method, the original chromatogram uncorrected
for axial dispersion, F,,1s used in place of Wy. The D;, D; values
then are not the true values but are "effective" values called

D;', D', Thus, in Hamielecs method, equations (1) and (2) become;

My(t) = % Fle'e_Dz'V (3)
() = —2p s ()
N T T e 2V

The value of D;' and Dy' are found using the broad standard.
In order to calculate these values, equations (3) and (4) are

combined and equations (5) and (6) are used.

ﬁi,](t) _nat '

—— = (3 Re 2} (3R )
My (t)

bya = ] "DZ'V

Mw(t) = D' I Fye (6)

The standard is assumed to have "known" ﬁﬁ(t) and Eﬁ(t)
values and these are used with its chromatogram F,, in equation
(5) to find D,' by a single-variable search technique. With Dy'
known, equation (6) is used to calculate the value of D;'. When
an unknown polymer sample is then analyzed, these values along
with F, for the sample are used in equations (3) and (4) to
calculate ﬁb(t) and Eﬁ(t) for the polymer sample.

The Yau method proposes to calculate the true values Dy, Dy

by the same general technique by including a correction factor
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for axial dispersion (h) in the calculations. The modified

equations for this system are given in equations (7), (8) and (9).

2
M () = e 2/4h 5 E D P2V S
W 2
Dy /un
— Dje
M (t) = _}_Tv (8)
I Fye 2
ﬁﬁ(t) ‘Di/Zh -D,v Dsv
N e {Z Fye 27} {£ Fye 2"} (9

My (6)

In these equations, h = % 0~2 where o2 is the variance about the
mean of a single species chromatogram. It must be determined
beforehand by the analysis of a narrow standard.

These equations are handled in the same general fashion as
in the Hamielec method. Equation (9) and F, for the standard and
an estimated h value are used to evaluate Dy via a single variable
search method, followed by the use of equation (7) or (8) to
evaluate D;. The unknown polymer is then analyzed by finding Fy
and using D;, D; and h in equations (7) and (8) to calculate
My(t) and My(t).

Note that there 1s very little difference between the two
methods except for the non-linear correction term E-exp(Di/qh).
However, depending upon the extent of dispersion, it may help to
eliminate some of the bias in the Hamielec method (present when
the dispersion is large), or it may cause more severe propagation
of the sources of experimental error.

The ultimate test of any method of analysis must consist of
assessing how well it minimizes both the bias and the variance to
error propagation, these two factors oftem having to be traded off

against one another.

SOURCES OF ERROR

In using the two GPC methods discussed, several sources of

error appear in the combined calibration and analysis of unknown

technique. These errors shall be discussed in turn,
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i) Skewing

It is possible that the columns used lead to skewing, hence

non-Gaussian chromatograms, which is not accounted for.

ii) Mismatched Standard and Sample Distributions

The standard and the unknown may differ in their distri-
butions. This may show up as a differing amount of narrowness,
a difference in the elution volume range at which the majority
of polymer is observed or even that parts of the chromatogram
for the unknown may lie outside the calibration curve produced
by the standard. Yau et a1(2) have suggested that the Hamielec
method does not provide accurate results if the standard and

unknown do differ in their distribution.

iii) Characterization of the Standard

During the development of the calibration curve, the ﬁﬁ, ﬁw
values for the standard are assumed known from some other
technique such as osmometry for ﬁﬁ and light scattering for ﬁh.
However, these values will have error associated with them,
perhaps as high as 10%, due to experimental error in the
methods. (3:%)

iv) Replication Errors

The GPC chromatograms which are produced are not necessarily
exactly the same from one analysis to the next. This could be
due to environmental change such as a change in temperature or
perhaps a change in the packing material with time. This leads
to replication errors which affect both the replication of the

standard and the unknown polymer chromatograms.

v) Dispersion Factor

Specifically for the Yau et al method it is possible that
there are errors present in the value of h which is evaluated
using narrow polymer standards. This could be due either to
experimental error or due to lack of narrow standard for the
polymer being analyzed. 1In the second case, this necessitates

either estimating h from narrow polystyrene standards or making
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a reasonable guess of the value, both of which may cause
significant errors perhaps as high as 50%.

Note that the effects of errors due to types (i) to (iv)
may also be a function of the true h value in the Yau method.
The correction factor used introduces non-linearity as discussed
previously, and the degree of non-linearity may then depend to

some extent on the value of h.

METHOD OF ANALYSIS

The basic idea of a Monte~Carlo simulation is to assume a
polymer standard and some polymer samples with truly known prop-
erties (ﬁﬁ, My) and with chromatograms F,, obtained from a GPC
with no measurement error and a known dispersion factor h.

Simulated errors of a magnitude expected to occur in practice
are then added to these true quantities (ﬁﬁ and EW of the standard
F, of the sample and the dispersion parameter h), and the effect
that these errors have on the estimated final properties (ﬁﬁ, ﬁw,
P=ﬁw/ﬁﬁ) of the sample is observed. A reasonably large number
(50 in our analysis) of such simulations using different random
errors are usually performed in order to get an estimate of the
distribution of the results about the known true values which
were used to generate them.

Any method of analysis will usually result in two types of
error. A bias (a difference between the mean of the results
obtained by the analysis and the true value) will usually be
present due to the non-linearities of the methods and the approx-
imations made in developing the theory. This has usually been
the only factor looked at in discussions on various methods of
testing GPC data. However, equally important is the error
variance of the estimated properties. This source of variation
resulte from the propagation of the various sources of random
measurement errors into the final results. A convenient measure
of the total effect of these two sources of error is the Mean
Square Error (MSE) defined as the expected deviation between the

estimated property (yy) obtained by a given method and its true
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value u, that is

MSE = E(y; - w)? (10)

It is easily shown that this MSE can be expressed as the sum
MSE = E(yq - )2 + E(y - w)?

= (error variance) + (bias)?2 (11)
where ; is the mean of the distribution of values yi of the
property.

Obviously one should compare methods by looking at their
relative MSE's and not just at the bias components of them.
Methods which serve to reduce the bias component of error (such
as Yau et al's modification of Hamielec et al's method) may in
fact increase the propagation error component. Such a situation

is depicted in Fig. 1.

METHOD 2

prix)

e

o - po —y o

bias— X AXIS

N

x|
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| ———
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=

Figure 1: Comparison of two hypothetical GPC analysis methods.
Method 1 may be more accurate for calculating true
mean (i.e. no blas) at expense of larger variance
than method 2.
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In order to select a realistic "known'" situation on which to
base our simulation study and to obtain realistic estimates of
measurement and replication errors, we made use of the extensive
GPC data obtailned by Garcia(5) on acrylonitrile polymers. The
standard was a 947 acrylonitrile - 6% styrene copolymer provided
by Monsanto with ﬁﬁ = 38,800 (estimated using osmometry) and
ﬁw = 117,000 (estimated using light scattering techniques). The
unknown polymer samples consisted of 100% acrylonitrile polymer
produced under a variety of conditions (varying temperature,
initiator levels and conversions). A total of 100 chromatograms
including a considerable number of replicates were available for
evaluation of distributional shapes and replicate variations.

A number of distribution models were fitted to the chromato-
grams of both the standard and samples. As a result of this a
Weibull distribution was used in the subsequent studies to rep-
resent the chromatograms of the standard and a Gamma distribution
was used for the sample chromatograms. These were truncated after
60 points (in steps of .5 ml from starting elution volume) to
avoid the problems inherent with infinite tailed distributioms.

SIMULATION RESULTS

In order to evaluate the effect of each source of error
(section 3) on the results of analyzing the GPC data by the
two methods, a set of Monte~Carlo simulations were performed
assuming only one source of error in each case. A final more
realistic simulation in which all sources of error were simul-
taneously present was then performed. These are discussed in

turn.

1) Skewing
The sample and standard chromatograms used in this study

are skewed to the right as is the usual situation. Neither the
Hamielec nor the Yau methods take such skewing into account and

therefore they will both suffer from some biasing of the results.
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ii) Mismatched Standard and Sample Distributions

As mentioned previously, Yau et al have shown that the bias
component of the error in Hamielec's method depends to some extent
on the chromatograms of the standard and sample being similar. 1In
order to ensure that such a component of error is present in our
analysis samples having chromatograms considerably different from
that of the standard were used. (see Fig. 2). This pronounced
difference should serve to inflate the bias component of the MSE

of the estimates obtained by Hamielec's method.

iii) Errors in Characterizing the Standard

In evaluating the parameters of the calibration curve (Dj
and D; in Hamielec's method and D; and Dy in Yau's) using
equations (5), (6) or (7), (8), (9) respectively, it is assumed
that the values of the number and weight average molecular weights
for the standard are known. In fact, the errors inherent in
obtaining these estimates for a broad standard by such usual
methods as esmometry and light scattering would appear to be in

the order of up to 102(3’”1 A conservative error of 6% (standard

P
(@]
T

NORMALIZED HEIGHT
'o .
R
¥

o
NS
o
ok

~-—
1 n ~—

30 35 40
ELUTION VOLUME (mis)

Figure 2: Comparison of chromatogram of standard and chromatogram
of sample (standard —; sample --~)
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deviation) was therefore used in the studies reported here. Other
simulations using 3% and 9% errors in the standard's molecular
weights showed that the resulting propagation of error into the
final estimates of the sample molecular weights simply varied
linearly with the standard's errors.

To investigate the propagation of these errors in analysis
of the standard a Monte-Carlo simulation was carried out in the
following manner. Taking ﬁﬁ = 38,800 and ﬁﬁ = 117,000 (Monsanto
values) to be the true molecular weight averages of the standard,
a simulated pair (ﬁﬁST.’ ﬁhs ) was obtained by adding random
normal deviates (uncorrelates'with 0 = 6%) to the true values.
Values of the calibration constants (Di and D; or D; and D,) were
then calculated using this simulated pair which were then used to
obtain ﬁﬁ, ﬁﬁ and polydispersity(P) estimates for the sample by
both Hamielec's and Yau's method. No other sources of error were
introduced. (ie. the chromatograms FV and the dispersion factor h
were assumed determined without error). This process was repeated
50 times to provide a sampling distribution for these estimates
(for a given value of h).

Since the results will be dependent upon the amount of
dispersion in the columns the entire simulation was then redone
for 12 different values of dispersion as simulated by using 12
different values of the dispersion factor h in generating the
data. (with h values of .05, .1, .15, .2, .25, .3, .5, .6, .7, .9,
1.38, 3.0)

The propagation error variances (VAR) and the mean square
errors (MSE) of the sample ﬁﬁ, ﬁh and P were calculated in the

following manner.

50

VAR(Y) = 73 L 0y -97 (12)
t=
50

MSE(Y) =35 ] (y, - w? 13)
t=1

where ; is the average of the sample property and y is the true mean.
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Since the same standard and sample chromatograms were used for the
different assumed values of dispersion the true averages n corres-
ponding to each value of h were calculated using the dispersion
correction E(t) = exp (+ D»%/,h) with no errors at all assumed.
These are shown in Table 1 for sample B7-5

Note that the molecular weight averages increase as h decreases
until very small h values when there is a dramatic decrease. This
indicates that the low molecular weight tail is being corrected
first and only for very low h does the high molecular weight
section become affected. Also, as h decreases, the percent correct-
ion for ﬁﬁ (due to E(t)) differs from the correction for ﬁw (which
is 1/E(t)). This could result in a very strong non-linear effect

for small h especially in the polydispersity.

TABLE 1

True Values for Samples B7-5 as Function of h Value

hvalue  Hy(e) x 107 H(0) x 1070 PoYA E(t)*
.05 3.24 1.52 4.69 31.46
.1 11.16 2.25 2.01 1.52
.15 10.35 2.16 2.09 1.25
.2 9.98 2.12 2,13 1.16
.25 9.77 2.10 2.15 1.12
.3 9.64 2.09 2,17 1.10
.5 9.40 2.06 2.20 1.05
.6 9.34 2.06 2.20 1.04
.7 9.30 2,05 2.21 1.04
.9 9.25 2.05 2,22 1.03
1.38 9.19 2.04 2.22 1.02
3.0 9.12 2,04 2.23 1.01
100,000 9.07 2.03 2.24 1.00

*E(t) = e+D22/“h which represents the size of the correction made

for axial dispersion., ie. 1.10 represents a 10%Z change in

Hamielec's value.
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In Fig. 3 the propagation error standard deviations (PE)
and the root mean square error (RMSE) expressed as percentages of
the true means, that is (YVAR/u)*100. and (VMSE/n)*100 respectively
are plotted for the ﬁﬁ, ﬁﬁ and P values obtained from the 50

simulation results using both methods of analysis,

The propagation error standard deviations for Hamielec's
method was always slightly lower than those for Yau's but due to
the bias component in the former method the RMSE's were always
slightly larger. Since the correction factor, E(t), would not
perfectly correct for dispersion in practice even if h were

exactly known, the RMSE plots in Fig. 3 may be too low for Yau's
method.

From Fig. 3, we see that there is less than a 1% difference
in RMSE between these two methods for dispersion factors h greater

than .5 for ﬁﬁ difference (correction of about 5%), or .2 for ﬁw

20¢
415
[}
\ o®
;‘5".‘ !
1= Y z
o \ -1 O
- \\\ m
1= o ‘ ‘\‘\- P{ g
3 \: )
w ‘\ . 45 -
\
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o© ~— “--—‘-_/-h— ........
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O 1 ) 1l
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Figure 3: 7 RMSE curves for sample —-,_ﬁh and polydispersity, P,
resulting from 6% errors in MN and Mw of the standard
(Yay —; Hamielec -—- )
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and P differences (correction of about 16%Z). Below these values,
the RMSE difference becomes appreciably greater due to the

increased bias in Hamilelec's method when dispersion is large.

As far as the error magnitudes are concerned, Fig. 3
illustrates that 6% errors in ﬁh and ﬂﬁ yield 4 to 5% errors
— — ST ST
in MN and 7 to 8% errors in Mw and P for the sample.

This study also found that errors in ﬁﬁ for the sample
were most sensitive to errors in ﬁﬁ , errors in ﬁ% for the sample
were most sensitive to errors in ﬁw while errors in P for the

ST —
sample were essentially equally affected by errors in MN and
— ST

Mgy

iv) Errors in Replication of the Chromatograms

To characterize the type of replication errors inherent
in the chromatograms of a sample injected a number of different
times, truncated Gamma distributions were fitted to the replicate

(3

chromatograms obtained in Garcia's work. The average distri-
bution parameters (0,r) obtained on three different replicated
samples (with 4 replicates each) and the estimates of pooled
variances (Sez, Srz) and covariance (Srg) of these parameters are
given in Table II.

To evaluate the propagation effect of these chromatogram
replication errors on the variance of the estimated sample mole-
cular weight averages, the following procedure was followed. A
set of 50 bivariate, normally distributed random deviates was
generated with variante and covariances of the distribution
parameters equal to those in Table 2. These were then added to
the mean values of 8 and r for sample B7-5 (see Fig. 2) and a
simulated set of 50 Gamma distributions were generated to represent
iO replicates of a sample chromatogram. Assuming that ﬁﬁ T and
Mws were known without error, and the dispersion factor ﬁ also
known, the calibration constants were obtalned. For each simulated

sample chromatogram the molecular weights and polydispersity were
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TABLE 2
Samples Chosen for Study

Pooled

Sample No. Conditions Parameter —_— Correlation
—— Variances and S$—————
Estimates ——————————— Parameter p
—_— Covariance —————
B7~5 X = .93 p = 774
[I]g = .2 wt% r =4.74
T = 60°C
Bg-1 X = .12 6 = .755 Sg2 = .0067
[I], = .025 wt% = 4.98 Sy2 = .0953 .54
T = 60°C S8 = .0138
Hl-4 X = .98 6 = .737 \
[1], = .05 wt% r = 4,63
T = 80°C

calculated. This was repeated for all 12 h values stated

previously.

Fig. 4,5, and 6 display the RMSE and WAR/p values (PE) of ﬁ&
MW and P respectively for the two methods. It can be seen that the
RMSE for Hamielec's method is always less than the corresponding
RMSE for Yau's method., In fact, for values of h below 1.0, the
RMSE by Hamielec's method was even below the propagation error
standard deviation for Yau's values. It 1s also interesting to note
that a bias develops in Yau's method due to the nonlinear correction
factor as illustrated by the difference between the propagation
error variance curve and the RMSE curve for Yau, but this is only

around a 1% difference at most and is fairly negligible.

The error magnitudes of the three properties differed
markedly. For ﬁﬁ, the RMSE values were around 16 to 187 of
for most h values. For ﬂﬁ, the error values were 13 to 15% while for

polydispersity the RMSE values were normally only 9 to 10%. It
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Figure 4: % error curves due to errors in replication for sample
MN (Hamielec RMSE —; PE for Yau —-; Yau RMSE =—c<¢-++)
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Figure 5: % error curves due to errors in replication for sample
Mw (Hamielec RMSE —; PE for Yau =--; Yau RMSE —eemsse)
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N
O
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@

9% ERROR FOR POLYDISPERSITY , P

Figure 6: % error curves due to errors in replication for sample
polydispersity (Hamielec RMSE -—; PE for Yau --; Yau
RMSE —ce—s+)

is also worth noting that for low h values (below .9) that errors
in the replication of chromatograms cause more problems in Yau's
method as shown by the very rapid exponential rise at low h values
for RMSE.

v) Errors in Dispersion Factor

Due to the absence of narrow standards for a given polymer,
either a narrow polystyrene standard is used to determine h or else
an estimate is made. There is therefore a chance of large errors

in h occurring, perhaps 50% or higher as stated earlier.

To examine the error propagation due to this source, a
Monte-Carlo simulation was carried out as follows. For each of

the 12 h values given earlier, a set of 50 random normal deviates
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with mean zero and oy = 1,2,3,6 or 9% of the given h were generated
and added to the h value. For each of these, assuming MNS s MWST
as known, the calibration constants were calculated and then used
to determine ﬁi, ﬁw and P for the sample assuming no errors in the
chromatograms. This provided sampling distributions for a given h
and % which were then analyzed as in the study of errors in the
standard molecular weights.

To examine values of oy = 25, 50 or 100% of a given h, a
slight alteration was necessary to prevent h from being negative.
To handle these cases, random normal deviates of sufficient o were
introduced into £n(h) to yield a set of 50 h values with the desired
% but all non-zero. The calculation procedure was then the same

as for the normal set of h values.

Fig. 7,8, and 9 display the RMSE values for EN Fﬁq and P for

the sample respectively for Hamielec's method as well as for Yau's

20+
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Figure 7: 7% RMSE curves due to errors in h for sample ﬁﬁ (Hamielec
RMSE —; Yau RMSE for 25% error in h —--; Yau RMSE for
50% error in h —ee—s+)
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Figure 8:

Figure 9:
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method for values of o, = 25 and 50% of the h value. It is apparent

that unless oy = 50% or more and h is less than .2 that RMSE for

Yau's method is less than the RMSE for Hamielec's method.

Also, even for o, as high as 50%, for all h above .4 the

h
RMSE values are always below 4% of p and as such it would seem that

changes in h are fairly insignificant.

This study also found that oy had to be around 60% or
greater for most h values before RMSE for Yau would be larger than

RMSE for Hamielec.

COMBINATION OF ALL SOURCES OF ERROR

To make final conclusions and comparisons, a Monte-Carlo
simulation was carried out using all the sources of error together

and was carried out as follows.

A vector of parameters was defined as (ﬁﬁ . ﬁh , hy 8, 1)
ST ST
which were the parameters which the individual error analyses exam-

ined. Three sets of 50 random normal deviates were produced and
o= =
MNST

h = 100% using variation in

£n h). ""Also, a bivariate set of parameters (8, r) were produced

added to the first three elements of the vector such that

s
62, M = 6% and o, = 10%Z (and also ¢
ST h

as discussed previously. For each vector, the first three values
were used to calculate the calibration parameters which were then
used to calculate ﬁﬁ, ﬁﬁ and P for the samp}e pro?uced by generating
the chromatogram with the parameter values 0 and r. The propaga-
tion error variance and RMSE value were arrived at as before with

the procedure being repeated for all the h values for this study.

The results are shown in Fig. 10,11 and 12 for ﬁﬁ, ﬁh and P
for the sample respectively. Again the RMSE for Hamielec's method
is always below the RMSE for Yau's method. Also, it is apparent

that changing the o, from 10% to 100% changes the RMSE values by

h
less than 1% for all h values above .4, thus indicating the small

effect errors in h have on the total error in this analyses.
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Figure 10: % error_due to including all errors (comprising 6% error in
and of standard, replication error and 10% or 100%
errors in h) for sample MN (Hamielec RMSE —; PE for Yau
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Figure 11: % error due to including all errors for sample

—M}' (Hamielec
RMSE —; PE for Yau with 10% error in h --; Yau

E with
10% erroxr in h —ce=ee, Yau RMSE with 1007 error dn h <+++)
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Figure 12: % error due to including all errors for sample polydispersity

(Hamielec RMSE —j; PE for Yau with 10% error in h --;
Yau RMSE with 10% error in h -++-++, Yau RMSE with 100%
error in h sese)

The magnitudes of the errors vary widely. For ﬁk, it is
17 to 19% for h above .5, for M. it is 14 to 16% for h above .5,
while for P it is 8 to 10% for the same h range.

Fig. 13 shows the various error results for the total
source of error study as well as for the individual contributions
for ﬁﬁ for the sample. It is fairly obvious that the dominant
effect in producing the total error is the error due to replication
errors since the replication error curves lie so close to the total
error curves. It would therefore appear that to reduce the final
error in the results it is most profitable to try and achieve

reproducability in the analysis.

CONCLUSIONS
Although one must be cautious In trying to generalize the

results of a simulation study such as this, that has been performed
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on a particular system, a number of interesting points have become

apparent.

In the total error analysis, it was found that errors of
around 15% to 20%Z in the estimated sample values of ﬂ& and ﬁh and
around 10% in the polydisperisity (P) of a sample could easily
result from small errors inherent in the characterization of the
properties of the standard and from chromatogram reproducibility

errors. The latter type of error was found to be the most import-

ant.
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In comparing the linear effective calibration method of

09)

analysis proposed by Balke, Hamielec, et al with Yau's modi-~

fication of it(z), it was found that the correction for bias
provided for in the latter method was often negated by increased
propagation of experimental errors in this method. In fact, in
terms of mean squared error, which includes both the contributions
due to bilas and to propagation of experimental errors, the simpler
Hamielec method was usually as good as or better than Yau's modi-

fication of it.
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